Total 4 classes: background, brainstem, left/right parotids
1. Latest results
ROI |
Brainstem |
Left Parotid |
Right Parotid |
Average |
Score |
0.86830 |
0.75442 |
0.75059 |
0.79111 |
2. How to use
2.1. Prerequisites
Check the installation if needed.
2.2. Download the trained model
make download_model
There will be a trained model weight downloaded and named as model.pt.
2.4. Configure the inference behavior
infering.yaml
gpus: 0 <-- YOU CAN SET "gpus: 0,1" IF THERE'RE TWO AVAILABE GPUS
output_threshold: 0.2
output_dir: outputs
model_weight: model.pt
loader:
name: NRRDLoader
data_dir: data <-- SPECIFY A DATA DIRECTORY
roi_map:
Brainstem: 1
Parotid_L: 2
Parotid_R: 3
spacing: 1
test: false
resample: false
generator:
BlockGenerator : ...
Augmentor : ...
BatchGenerator :
n_workers : 1
batch_size : 12 <-- CHOOSE A PROPER BATCH SIZE
verbose : False
model: ...
2.5. Make inference
make infer
The output results will be in NRRD format like
OUTPUT_DIR
├── DATA_INDEX
│ └── structures
│ ├── BrainStem.nrrd
│ ├── Parotid_L.nrrd
│ └── Parotid_R.nrrd
...