National Taiwan University
Runge function $f(x)=\frac{1}{1+25x^2}$
Suppose we partition $[0,1]$ into $m$ intervals,
and then compute $\omega_m(t)$
where $t$ is choosen as the
point of the 2nd rightest point as below.
$\implies |\omega_m(t)|=\frac{1}{m}\frac{1}{m}\frac{2}{m}\dots\frac{m-2}{m}\frac{m-1}{m}$
And then we halve each $m$ intervals, and then compute $\omega_{2m}(t)$
$ \implies |\omega_{2m}(t)| = (\frac{1}{2m}\frac{2}{2m}) (\frac{1}{2m}\frac{2}{2m}) (\frac{3}{2m}\frac{4}{2m}) \dots (\frac{2m-5}{2m}\frac{2m-4}{2m}) (\frac{2m-3}{2m}\frac{2m-2}{2m})\\ \leq (1\cdot\frac{2}{2m}) (1\cdot\frac{2}{2m}) (1\cdot\frac{4}{2m}) \dots (1\cdot\frac{2m-4}{2m}) (1\cdot\frac{2m-2}{2m}) = |\omega_m(t)| $
Please open numerical-differentiation.ipynb